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We introduce an abstract scalar field and a covariant field equation, by which we make an attempt to connect
the Fourier heat conduction and wavelike heat propagation. This field can be the generalization of the usual
temperature from a dynamical point of view. It is shown that a kind of effective mass of this thermal process
can be calculated. Finally, we express the unit of dissipative action with the help of universal constants.
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The transport phenomena mean in general dissipative pro-
cesses, and their description is based on the methods of clas-
sical field theoryf1,2g. We managed to give the Lagrange
density functionf3g for those field equations that are given
by linear parabolic differential equationsf4–6g. One of the
most important cases is the temperature field in local equi-
librium. The process occurs in this field governed by the
parabolic differential equation, the Fourier heat equation,
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whereT is the temperature,l is the heat conductivity, andcv
is the specific heat capacitysreferring to unit volumed. Of
course, the hypothesis of local equilibrium restricts the speed
of processes, i.e., this is valid for those kinds of fields where
the processes themselves are very slow.

To apply the Hamilton-Lagrange formalism for parabolic
transport equations like heat conduction, we have worked out
a potential-based formulationf5,6g. In this description we
can write the Lagrange density function for this dissipative
process as
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where we introduce a scalarspotentiald field wsx,td. This
generates the measurable temperature fieldTsx,td,
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and this is the definition of the potential fieldwsx,td f5,6g at
the same time.

Moreover, in this way we have the tools for the canonical
quantization of a dissipative process. We have introduced the
canonically conjugated quantities and we have expressed the
Hamiltonian of the field. The commutation rules are

fPk
sCd,Clg = hdkl, s4d

fPk
sSd,Slg = hdkl, s5d

whereCl and Sl are the operators coming from the Fourier
coefficients ofwsx,td. Pk

sCd and Pk
sSd are the conjugated mo-

menta and the constanth is the unit of dissipative action. We
calculateh in terms of universal constants at the end of this
paper.

Introducing the temperature operatorf7,8g, we can obtain
its eigenvaluessl /cvdk2h, wherek is the wave number. The
eigenvalue of energy is«skd=lk2h.

We try to make a step toward the description of the kind
of heat processes, in which the speed of heat propagation
compared with the speed of action cannot be neglected
f4,9–13g. Let us take the following invariant Lagrange den-
sity function:
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wherec is the speed of light.xm=sx0,x1,x2,x3d=sct,x,y,zd
is a contravariant four-vector,xm=sx0,x1,x2,x3d=sct,−x,
−y,−zd is a covariant four-vector,]m=] /]xm, and]m=] /]xm.
Thus, the covariant Euler-Lagrange equation as the equation
of motion can be written

]m]n]
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4

16l4w = 0. s7d

We calculate it for the one-dimensional case

]4w

c4 ] t4
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]x4 − 2
]4w

c2 ] t2 ] x2 −
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Let us define an abstract field quantityT by the potential
function w

T = ]m]mw +
c2cv

2

4l2 w. s9d

It is easy to check thatT is an invariant scalar and the field
equation forT is
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and for the one-dimensional case we can write
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Expressing the dispersion relation of the problem we obtain

vTscd =Îc2k2 −
c4cv

2

4l2 . s12d

Since we demand causalitysthe theory is lineard; thus the
value

k0 =
ccv

2l
s13d

means a physical limit. Ifk.k0 than the process can be
described with a temperature wavesa wavelike heat propa-
gationd, whose speed can be expressed

w =
v

k
= cÎ1 −

c2cv
2

4l2k2 , c. s14d

If k!k0 the theory should provide the classicalslong wave-
lengthd behavior, i.e., the group velocitysdv /dkd should be
the speed of heat propagation in the case of Fourier heat
conduction. This relation can be obtained from Eq.s1d. The
dispersion relation is

ivcv − lk2 = 0, s15d

by which we can write the group velocity

dv
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= − i
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k. s16d

The complex uniti shows that the heat conduction is not a
wave propagation. We can compare this result with the
wavelike solution if we consider Eq.s12d, we calculate the
dispersion relation and we take the limitc→`. We can im-
mediately see that we can get back the classical limit
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This means that the propagation of the thermal effects is
much slower than the speed of light

vT =
2l

cv
k ! c. s18d

Here, we considered the classical limitk!k0 andc@1.
It seems to us thatk0 differentiates two different behaviors

of the propagation of heat. Whenk.k0 the heat propagates
as a wave, i.e., there is no dissipation and the speedw is a
large value. Whenk,k0 the temperature propagation is the
classical heat conductiond, i.e., the process is dissipative and
the speedvT is small.

Previously, we have pointed out the possibility of exis-
tence of quasiparticlesf14g in the heat conductionf7,8g, and
now we show a different way to predict these excitations.

Here, we mention that there are several papers that deal with
the existence of thermal particles from different viewpoints
f15–18g. For this reason, we turn back to the examination of
Eq. s8d and we write it again as
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This equation can be considered as a one-particle wave equa-
tion. We realize that this may come from that equation where
we used the usual operator calculus, i.e., we have substituted
the energy operator

E = −
hp

i

]

]t
s20d

and the momentum operator

p =
hp

i

]

]x
. s21d

hp is the Planck constant per 2p. The obtained one-particle
equation is
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which can be written as a product
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The first multiplier pertains to a positive mass particle

E2 = p2c2 +
c4cv

2

4l2 hp
2; s24d

the second multiplier corresponds to an imaginary mass

E2 = p2c2 −
c4cv

2

4l2 hp
2. s25d

However, it is not clear what an imaginary mass may mean.
Here, the question is open. Now, let us consider Eq.s24d, in
which the second term on the right hand side should be the
square of the self-energym0

2c4=sc4cv
2/4l2dhp

2. We can read
the rest massm0 of this quasiparticle as

m0 =
cv

2l
hp. s26d

fA negative value ofm0=−scv /2ldhp also appears, but we do
not understand what it may mean.g If we introduce the ther-
mal diffusivity D=l /cv, we can write the massm0=hp/2D,
and the self-energy of the quantum can be writtenE0
=hp/2Dc2. We express the momentump=hpk, and we write
the kinetic energy of the quasiparticle in the classical form
sp2/2m0d. Here, we have substituted the rest massm0 by
which the description turns to the classical theoryf19g, i.e.,

e =
hp

2k2

2m0
. s27d

One can expect that the appearance of this massive quasipar-
ticle does not mean a contradiction for the case of heat dif-
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fusion. We can show this if we substitute them0 from Eq.
s26d by which we obtain

e =
l

cv
hpk

2. s28d

Furthermore, the kinetic energyEk can be expressed by the
massm0 and the classical group velocity of heat propagation
vT from Eq. s18d,

Ek =
1

2
m0vT

2. s29d

We take the expressions ofvT and m0 from Eqs. s18d and
s26d, and we obtain

Ek =
l

cv
hpk

2 =
hp

2k2

2m0
= e, s30d

which is expected from a consistent theory.
We can calculate the average energy of one quantum if we

assume a weight factorwskd, which gives the distribution of
the possible states as a function of wave numberk. Now, we
do not need to say anything about the weight function, we
just formally express the average ofe,
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wherednskd denotes the density of states. We can take into
account that the specific heat of one degree of freedom is
cv=kB/2, wherekB is the Boltzmann constant, so we obtain

ē1 =
2l

kB
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E
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On the other hand, we can calculate the average energy of
one quantum when we use the expression«skd=lk2h,
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We expect that the values of these averages of quanta, which
were derived by different waysfEqs. s32d and s33dg, al-
though they are related to the same physical process, should
be equal. We immediately realize that

h =
2hp

kB
, s34d

i.e., the constanth sunit of dissipative actiond can be traced
back to the universal constantshp andkB. We can express the
quantum of heat by these,

«skd = 2l
hp

kB
k2. s35d

Summarizing the results, we can see that the quantum field
theory of dissipative processes enables us to get a deeper
insight into the physical processes. The nonequilibrium ther-
modynamics can handle the concept of irreversibility, and
the field theory can lead us to the microscopic level. In the
present work we elaborated the wavelike generalization of
heat propagation, and we could calculate the effective mass
of quasiparticles of a thermal process. The value of the ef-
fective mass depends on the thermal diffusivity and the
Planck constant. The greater thermal diffusivity means a
smaller mass of quasiparticles.
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