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Quasiparticles in a thermal process
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We introduce an abstract scalar field and a covariant field equation, by which we make an attempt to connect
the Fourier heat conduction and wavelike heat propagation. This field can be the generalization of the usual
temperature from a dynamical point of view. It is shown that a kind of effective mass of this thermal process
can be calculated. Finally, we express the unit of dissipative action with the help of universal constants.
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The transport phenomena mean in general dissipative pro- [P,C]=héy, (4)
cesses, and their description is based on the methods of clas-
sical field theory[1,2]. We managed to give the Lagrange S o1
density function3] for those field equations that are given [P”,S]1=hdy, (5)

by linear parabolic differential equatiofg—6]. One of the

most important cases is the temperature field in local equi-
librium. The process occurs in this field governed by the

parabolic differential equation, the Fourier heat equation,

- 5=0, ®

where7 is the temperature, is the heat conductivity, and,
is the specific heat capacityeferring to unit volumg Of

of processes, i.e., this is valid for those kinds of fields wher

the processes themselves are very slow.

To apply the Hamilton-Lagrange formalism for parabolic
transport equations like heat conduction, we have worked out

a potential-based formulatiofb,6]. In this description we

can write the Lagrange density function for this dissipative

process as

_1{e)?
L_2(at> * @

where we introduce a scaldpotentia) field ¢(x,t). This
generates the measurable temperature fiélgt),

1)\_2((92_@>2
2¢2\ox?)

=-2F_ =, ®

and this is the definition of the potential fieldx,t) [5,6] at
the same time.

Moreover, in this way we have the tools for the canonical
quantization of a dissipative process. We have introduced th

whereC, and § are the operators coming from the Fourier
coefficients ofe(x,t). P< and P\¥ are the conjugated mo-
menta and the constahntis the unit of dissipative action. We
calculateh in terms of universal constants at the end of this
paper.

Introducing the temperature operaf@8], we can obtain
its eigenvalueg\/c,)k’h, wherek is the wave number. The
eigenvalue of energy is(k) =\k?h.

We try to make a step toward the description of the kind
8f heat processes, in which the speed of heat propagation
ompared with the speed of action cannot be neglected
4,9-13. Let us take the following invariant Lagrange den-
sity function:

4.4

1 c'c
L= =(d,,0) () = = —5¢°,
2( @) (7 @) 21604 ¢

(6)

wherec is the speed of lightx“=(x%,x%,x?,x3)=(ct,X,y,2)

is a contravariant four-vectorx,=(Xg,Xy,Xz,%3) =(Ct, =X,

-y, -2) is a covariant four-vectod, =d/ dx*, and *=d/ ox,,.
Thus, the covariant Euler-Lagrange equation as the equation
of motion can be written

44

M 9V c v
d,,0,0"d QD—WQD—O. (7)
We calculate it for the one-dimensional case
P & & c'ct
At g2 e =0, ®
crott ot TcPat?ax?  16n

Eet us define an abstract field quantifyby the potential

canonically conjugated quantities and we have expressed the iion @

Hamiltonian of the field. The commutation rules are

i
T=0,0"¢+ 4)\2(p.
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It is easy to check thaf is an invariant scalar and the field
equation forT is
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2.2

i CC
0udT =5 3T=0, (10
and for the one-dimensional case we can write
18T #T c%?
- - T=0 (11
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Here, we mention that there are several papers that deal with
the existence of thermal particles from different viewpoints
[15-18. For this reason, we turn back to the examination of
Eqg. (8) and we write it again as

Fo Po_, Fe o
ctatt ax* TcFattax® 16\t '

Expressing the dispersion relation of the problem we obtainThis equation can be considered as a one-particle wave equa-

4.2

/ c’c
- 2

wr(c) = \/c?k? - 4)\2” )

Since we demand causalityhe theory is linegr thus the
value

(12

_cg
o= (13

means a physical limit. Ik>k, than the process can be
described with a temperature watee wavelike heat propa-

gation, whose speed can be expressed

W—g—c 1- C2C5 <c
TkTONT A T

If k<k, the theory should provide the classi¢kidng wave-
length behavior, i.e., the group velocitydw/dk) should be

(14)

the speed of heat propagation in the case of Fourier heat

conduction. This relation can be obtained from EL. The
dispersion relation is

iwc, - \k?*=0, (15)
by which we can write the group velocity
dw 2\
—=—i—k. 16
dk ! C, (16

The complex unit shows that the heat conduction is not a

tion. We realize that this may come from that equation where
we used the usual operator calculus, i.e., we have substituted
the energy operator

h, ¢
E=--2— (20)
1 ot
and the momentum operator
h, ¢
=P 21
P i ox (2)

h, is the Planck constant perr2 The obtained one-particle
equation is

E4 p4 2E2p2 C403
—— - = =0, 22
c*hy he ¢’y 16\t (22)

which can be written as a product

C4C2 C4C2
(- - g (- ) =0 e

The first multiplier pertains to a positive mass particle

42
c’cy

E2 = p?c2 + —2h2:

the second multiplier corresponds to an imaginary mass

4.2
c'C
vh2

E2=p%c? - L

(25

wave propagation. We can compare this result with the

wavelike solution if we consider Eq12), we calculate the

dispersion relation and we take the lingit- . We can im-
mediately see that we can get back the classical limit

dow 1 2\

— s~ -j—k. (17)
/7 I

dk  V1/c? - claNk? Cy

This means that the propagation of the thermal effects is

much slower than the speed of light

2\
vr= C_k< C. (18)

v

Here, we considered the classical lirkikk, andc>1.

It seems to us thd{, differentiates two different behaviors
of the propagation of heat. Whéa>k, the heat propagates

as a wave, i.e., there is no dissipation and the speéxia

large value. Wherk<k, the temperature propagation is the
classical heat conductipni.e., the process is dissipative and

the speed is small.

Previously, we have pointed out the possibility of exis-

tence of quasiparticlgd4] in the heat conductiof,8], and

However, it is not clear what an imaginary mass may mean.
Here, the question is open. Now, let us consider [24), in
which the second term on the right hand side should be the
square of the self-energygc®=(c’c;/4\?)h;. We can read
the rest massn, of this quasiparticle as
CU
my 2 hp. (26)
[A negative value ofmy=—(c,/2\)h, also appears, but we do
not understand what it may meaif we introduce the ther-
mal diffusivity D=\/c,, we can write the mass,y=h,/2D,
and the self-energy of the quantum can be writtep
=h,/2Dc?. We express the momentupxhyk, and we write
the kinetic energy of the quasiparticle in the classical form
(p?/2my). Here, we have substituted the rest magsby
which the description turns to the classical thef9], i.e.,

21,2
2mg
One can expect that the appearance of this massive quasipar-

(27)

now we show a different way to predict these excitationsticle does not mean a contradiction for the case of heat dif-
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fusion. We can show this if we substitute thg from Eq. o *
(26) by which we obtain J e(k)w(k)dn(k) f w(k)dn(k)
\ P — =\h—2— .33
— 2
€= thpk : (28) f dn(k) f dn(k)
0 0
Furthermore, the kinetic enerdsj can be expressed by the
massm, and the classical group velocity of heat propagation
vy from Eq.(18), We expect that the values of these averages of quanta, which
1 were derived by different waygEqgs. (32) and (33)], al-
E.= EmOUZT_ (29 though they are related to the same physical process, should

be equal. We immediately realize that

We take the expressions of- and my from Egs.(18) and
(26), and we obtain

2h
A h2k? h==2 34
Ex=—hk?=PE—=¢ (30) ke o

Cy 2mg

which is expected from a consistent theory.

We can calculate the average energy of one quantum if wee., the constarit (unit of dissipative actioncan be traced
assume a weight factav(k), which gives the distribution of back to the universal constaritsandkg. We can express the
the possible states as a function of wave nunkb&ow, we  quantum of heat by these,
do not need to say anything about the weight function, we
just formally express the average gf

0 0 h
= 2\ -2
f (Me,)hkew(k)dn(k) f k2w(k)dn(k) e(k) =2\ kBk : (35)
?1 = ° o = _hp ° o0 1
Jo anid fo dn(k) Summarizing the results, we can see that the quantum field
(31) theory of dissipative processes enables us to get a deeper

insight into the physical processes. The nonequilibrium ther-

wheredn(k) denotes the density of states. We can take intgnodynamics can handle the concept of irreversibility, and
account that the specific heat of one degree of freedom &€ field theory can lead us to the microscopic level. In the

¢,=kg/2, wherekg is the Boltzmann constant, so we obtain Present work we elaborated the wavelike generalization of
heat propagation, and we could calculate the effective mass

°°k2 (Kdn(k of quasiparticles of a thermal process. The value of the ef-
o Jo w(k)dn(k) fective mass depends on the thermal diffusivity and the
¢=—h, — (32 Planck constant. The greater thermal diffusivity means a
B f dn(k) smaller mass of quasiparticles.
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